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SUMMARY

An improved theory is presented for predicting the solute gradients that can be
generated with vessels of variable or constant cross-sectional area together with flex-
ible connecting tubing. Formulae are given for two possible arrangements using four
such vessels and, where there is the restriction of identical starting volumes, equations
are given for n compartments. The pgeneral principles behind the use of these equ-
ations for predicting pH gradients are considered, and the special case of two vessels
is shown to be capable of gencrating cight different pH profiles as a function of
volume delivered. Experiments are reported which support the usefulness of the
theoretical treatment.

INTRODUCTION

In a previous paper! we discussed the general principles underlying the gener-
ation of solute gradients using only a series of vessels and a peristaltic pump. We
mentioned that the concentration versus time profile could be calculated assuming
that the pump delivered at a constant rate, and that this could then be expressed as a
function of volume delivered. The present study arose out of the need to use a pump
of variable flow-rate or even to dispense with a pump aliogether and also from the
requirement to calculate pH gradients for use in ion-exchange chromatography. In
this paper we present a simpler theory of solute gradients which only considers the
concentration profile as a function of volume delivered. Then we extend the theory to
the prediction of pH gradients.

THE GENERAL THEORY OF GRADIENTS POSSIBLE WITH ALL VESSELS OPEN TO THE
ATMOSPHERE AND OF CONSTANT CROSS-SECTIONAL AREA

Consider a series of open vessels connected as in Fig. 1a. There is a starting
vessel, 0, followed by n further vessels, all well-stirred so that mixing is instan-
tancous. Hence as long as the flow-rate is sufficiently small we have no need to
consider time as an independent variable, and the vessels may be drained by gravi-
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Fig. 1. The assemblies of vessels used to generate solute and pH gradients. Vessal number 0 is always open
to the atmosphere and is not stirred. Vessels number 1, 2, .__, n are well stirred by magnetic followers. The
fluid constituting the gradiert may fow from vessel n under gravity or may be controlled by a pump. The
flow-rate is irrelevant within reason, ie., providing that mixing is instantaneous in all vessels. The gradient
may be stopped at any point and restarted or the flow-rate may be altered as required since the equations
given only consider the volume delivered from vessel number n. (a) All open vessels. In this arrangement,
all of the vessels have the same cross-sectional arca and are at constant hydrostatic pressure. Clips pre-
venting flow betwezn vessels are removed at the commencement of the experiment. As a volume element
dr flows out of vessel nz, a volume element idv/(r + 1) flows into vesscl / and an element (i + 1) dv/(z + i)
fows out. The net flow is thus —dv/(z + 1) for cach vessel. The gradient will continuc until that vessel
containing the least starting volume is exhausted, i.e. the vaiid experimertal rangeis0 < v < (2 + 1) min
(Vigs Vi) (b) Closed vessels. In this arrangement, the vessels § = 1,2, ..., nn are closed and so V{v) =
Vi, | = 1,2, ..., n. Because of this, the shape of vessels § = 1,2, ___, n and the volumes containad are
irrelevant. As a volume element dv is removed from vessel numbcr n, a volume element dv transferred
from number 0 into number 1. Each vessel gains dv and loses dv and the gradient is realised until vessel
number 0 emptics, ie. 0 < v < Vyo. The calculation can then be continued using C, (v = Vyqo) as the
concentration in a2 new starting vessel and using the appropriate set of equations for on€ fewer compart-

ment. In this method of generating gradients, it is advisable to reduce the dead volume of air as much as
possible by having vessels 1, 2, ___, n filled.

tational flow or bir an intetmittent or var;: 2le-speed pump. Let the mass of solute in
the ith compartment be M, and the volun:z be ¥ and consider the element of mass
dAf; added to the compartment when an element of volume dv flows out of vessel 7.
'l'his is

F=@Ci — G+ HOfn + 1)
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where- T -
Ci = M;'_/V.

Now since
av; .
—d;. = l/(n + 1)

then

Vi= Vi —v/n + 1)

where V,, is the volume in vessel i at v = 0, i.e. the start of the gradient. The problem
is now to derive a general formula for C(v), the concentration of solute in the ith
compartment, as a function of volume delivered, v. To do this we note that

dcC; dM, dv;
LAy L - M. | 2
dv ( dv Vi ' dv )/ '

=i(Ciy — CYiln + DV — v]

using the previous expressions for C,, V;, dM;/dv and dV;/dv.
It is now clear that to obtain the required expression for C; (v) we have to solve
the first-order differential equation

ac;
dv

+ iCli(n + D) Vg — vl = iCi_yfl(n + 1) Vo — V]

with integrating factor [(n + 1)V, — v] ™. In order to integrate the equation to obtain
C.(v), the gradient applied to the column, we need the expression for C,_,(v) and so
we simply bave to integrate systematically the expressions for Ci(v), i = 1,2, ..., n.

THE SPECIAL CASE OF FOUR OPEN VESSELS

To explain the general technique we systematically solve the equations for
C(v), i = 1, 2, 3. This will illustrate the general procedure to be followed if more
compartments are necessary and will lead to formulae that should cover most cases
required in practice.

For i = 1 we have

dcC,
dv

+ Gifl(n + 1) Vg — v] = Cooflin + 1) Vo — v]

leading to

<

C(v) = Cyg + (Coo — Cyo) viin + 1)WVy4
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where O is the concentration of solute in the ith compartment: when v = 0, ie.
Cio = C40) and of course Cy(¥) is constant at Cgy = Colv} for the duration of the

experiment.
Fori = 2 we have

4G £ 26,/In + DVzo — 3 =

2 (Cro + (Coo — Cro)/ln + D¥ofir + DVao —

leading to
C, _
[ + DV — oF
2 j- {Cm + (Coo — Cio) ¥V20fVio , B {Cio — Coo) dv
2+ D Vy — vP T+ DVl + D Vo — P

and giving the final expression
C,(¥) = Cyo + 2(Cyo — Cyg) vf{n + DV +
(Cz0 — Cio + (Coo — €10)V20/V30) (Vi + DV50)°.

For i = 3 we have, after sbme algebra;

dc
= +3Gln + D Vi — vl =

3a + Bl + D Vio — ] + 7 [ + D Vao — Wiz + D Vio — v ]

where -
@ = Cyp + 2(Cyo — Cyo) V3of¥20 + . -
- (Cyg — Cyo + (Coo — Clo);Vzu/ Vo) (V30/ V20)
B = 2[Cyo — Cyp ¥ (€Ca0-— Cig + (Coo — Ci0)¥20/Vio) V3ol Vacl/(n + 1} Ve
and . - . ’ o

¥ = (Csg — Cio + (Coo — C10)¥20/Vio)/(rF + V36

After using the integrating factor we find
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(r + [) Vio — -
o ) g8 - 4
. o+ d
3.[ {[(“ + 1) Fip — VF * [ + By Vzo — ¥ f(n + D) Vo — VP } ’
o 3872 ; 3y + 6

ST DV —F et D Ve — P [+ D Vo — ]
and the integration constant, 4, can be calculated from

Cso = @ + 3(n + D¥50B/2 %+ 3( + D> Vioy + (2 + 1)°F3, 8

to be given by the expression

6 = [C35 — Cyp + (Cio — Cap) V3o/Vag +

(Cio — Cao + (Cye — Coo)V20/Vio) (Faol V20)Vfin + 1)*73,-
So the final equation for C5(v) is.

C3(v) = C3o + 3(Cyo — C30) Wf(nn + 1)V3)
+ 3(Cse — Cao + (Cyo — Cr0)¥30/Vae) (¥/(n + 1) ¥30)
+ [C30 — C39 — (Cro — Ci0) V3o/ V20
+ (Cag — Cio + (Coo — Cio) Va0/Vio) (V3o V20)'1 (vf(n + 1) Vi)

Note that these equations for C, (v) and- C, (v) differ from those given previously'
since, in the former paper, the symbol g was mistakenly used in some places to
represent the flow out of compartment number zero, i.e. g/(n + I), rather than the
rate of delivery of the pump. The equations become consistent.on replacing g by gq/(n
+ 1) in the previous paper in the equations for C, (¢), C,(¢) and ¢ on page 992 and that
for v by v/(n + 1) in the legend te Figure 3 on page 995.

Finally we emphasise that this theory is only valid for vessels of constant iden-
tical cross-sectional area with alt compartments at the same hydrostatic pressure. The
equations are collected together in the Appendix for convenience; there are no special
problems whem V;q = Vo for any i # j. The integrated solutions are valid in the
interval

0Sv<@+ DV, VoS Vip i=L2,..,n
THE SPECIAL CASE WHEN ALE » OPEN VESSELS HAVE THE SAME VOLUME
It is evident from the symmetry involved in these calculations that a general

formmula cam be given for C,(v) in-terms of the Cy and V3. However, this formula
takes a very simple form when all the starting volumes are identical, say Vo = V, i =



ile : “W. G. BARDSLEY, J. M. WARDELL

1, 2, ..., n. This is a situation of considerable expeﬁmental value and the general
formuia is

C.(v) = —DCo — Camy o) (¥/(n + D V)
+ (2) (Cn.o »~2Cn-—1.o + Chz.0) (in + 1) V)z i .
—~ (3) (Coo — 3Cao10 + 3Ca_z9 — Ca—s,0) (VW/(n + 1) V)* +

Using the substitution v/(n + )V = w the formula may also be written as

Cu(w) = CB,O(! — w)* + (:) C —1,0 w(l — w)* ™ 1
+ B CrnowW (I — w24+ () CazowW’ (1 — W2 + .. + Coo w°

To prove this we observe that the general differential equation relating dC,/dv, G, and
G _.E=2,3..,nis

(l - ‘v) de

E dw TG T G

Now for C,(w) defined by
x
CGw) = 3 D G;ow'(d — wf™*
i=0

it follows that

1 — w)dG
k dw

(1

— W)
+ G =—~k—l‘§) ® C_io x

R k
Bt (1 — w1 k(L — W Y ) G W — w1
R i=0

. @ Ci-to (R) WLl — Wt

HMN

- - - - k—1

= _2}) (k ; 1) Cl—l—j.o wi(l - w)k—l-j = Ck_'l
i=

THE GENERAL THEORY OF GRADIENTS POSSIBLE WITH ONE OPEN VESSEL AND AL
OTHER COMPARTMENTS CLOSED TO THE ATMOSPHERE

Consider the arrangement dcpicted in Fig.-1{b), where vessel number zero is

open and vesselsi = 1,2, ..., nareclosed. For i # 0 the element of mass d M, added to
-v.he zth compattment durmg the transfer of an element of volame dvis g1ven by

=G — C.)dv =
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. av,
dv o
then
dC;
—5' = (Ci—l - C.)/Vz

and it follows that the general differential equation to be solved is

dc;
dv

+ CifVio = Ci1/Vio

This time, since the volumes ¥V; are constant for i # 0, we have a linear sysiem of
simultaneous differential equations to solve, namely

dc 1.1 . ]
dv‘ -l Vio Y Y i 0 G Coo/ V1o
dC,
dvz 1/Veo —1Vy O --- 0 &5 Y
- = +
dG; 0 YV —1/Vsg --- O c
dV 30 30 3 0
dc,
= ¢ 0 0 ...-v,|lc, 0

with characteristic equation:
. n

|4 -2 =(=D"TT (/¥ + A)
i=1

THE SPECIAL CASE OF FOUR COMPARTMENTS, THREE BEING CLOSED

We pressume first that none of the three closed vessels contain equal volumes
ie. Vg # Vy, i # j and note that this leads to three distinct cigenvalues. Cal-
culating the eiganvectors corresponding to these eigenvalues and adding a particular
integral to the complementary function, we obtain the general soluticn
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3 Cl ] r 1 -} - - 0 -
T S Vio - _ 3 ’ = v
€z =} Fis — Va0 A4+ pHe Mo+ 1 B+ge v o
o b Vio - Vo
NG | (Vm — V2o (Fio — F3o¥ | " Vy—V30
Q
0 |(C+me ™
1

where .4, B and € are arbitrary constants and f, g and / are functions of v. Now we
use the variation of parametess technique to evaluate £, g and A which must satisfy the

system

— _ - 1 — — 0 —
AT , . :
Vio — Vao 1 fem e+ 1 geTe +
VZ, ' L Vo
(VIO - VZO) (VIO - VSO) VZO - VSO -]
- i . (LN § ’ Coo/ V10

0 fre Vo = 0
- 1‘ ': i 0

Perfonmng the mtegatmn [eads to the foﬁowmg equatmns

_}: Ccas rﬂ"as'>’__- /*
& =Ias Emj{?m—;’é)}e‘*“s T B Zf

=< EC 30[“710 - Vsci (Vzc - Vsa)}f'ly"’
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and it now only remains to evaluate A; Band C. Thiscan be done since v = O requires
that B -

-'C“‘;-- T ' 1 ] ¥ 0 1.
1 Vo | -
Cso Vie — Vao j4+ 1 1 B+
Vio Vo
i Cso i i (Vio — Vao) (Vo — V3o) ] L Vao — Vso i
_ 0 _ _ .
0 C + 1 Coo
1 1

We find the expressions for A4, B and C to be

A = Cyo — Coo

B = Cyo + (CooV20 — Cr0V10)/(Vio — V20)

C = Cyp — CsoV20/(Vao — V30) + (Cro¥10 — Coo¥30)¥30/(Vio — Vo) (V20 — V30)
and this completes the integration for C{v) ﬁsing up to four compartments. The
general solution for #n compartments cas be obtained by symmetry from the equa-
tions just given for four compartments. However, a complication arises when any of
the starting volumes are equal since this leads to repeated eigenvalues. As ¢his com-
plication would often occur in the laboratory, we now deal with the case ¥V =
Vﬁ, for all i,f

THE SPECIAL CASE WHEN THE r» CLOSED VESSELS HAVE THE SAME VOLUME

It would often be convenient to the experimentalist to have a series of closed
vessels of the same volume, V, and, in this situation, the general formula for C,(v) is
quite simple. In fact

C (V) Coo + {(Co — Coo) + (C,, _ .o — Coo) o/ + KC, - s
' Cool/ 2/ VY + -2 + UCro — Coodflr — DA/ Py Lye—<¥

To see thls we recall the fact that the recurrence relationship is



218 . : W. G. BARDSLEY, J. M. WARDELL

i?iﬁf C. =¢ '

n— 1

anduse 0! = 1! = 1. - -
Now for & = 2,3, ..., n the general formula

S: (G - 1o — Cood/iNw/ VY

Ck(“’) = Coo + 7

k
i

leads to
dC k-2 A k—1 )
Vd_vk. =e v {_z;).[(ck—i—l,o — CodfiY(¥/V) — ‘—Zo [(Ck—i.o - Coo)/i!]("/V)l}
and so
de —lek = - i
V—d_ + C = Coo + €77 ) —Z'o G - i - 10 — Co/NV/IVY =G _
as required.

THE GENERAL PRINCIPLES UNDERLYING THE CALCULATION OF pH GRADIENTS

The equations given previously all refer to the concentration of solute emerging
from the nth vessel, i.e., C, as a function of the volume delivered to the column. We
showed earlier (Solano-Munoz and Bardsley, 1981) that the gradients realised experi-
mentally are insensitive to specific-gravity effects even up to molarities of around
unity. Therefore, if the starting vesseis contain several different, non-interacting sc-
lutes, it is possible to calculate the profiles for individual components. Suppose, for
instance, that the vessels contained solutes Sy, S,, ..., S; and there were n vessels plus
a starting vessel, then the equations describing the concentration of S,, S,, ..., §;
would be C8i(v), C3(¥),-..., C3i(v) aslong as §,, S,, ..., §; did not react chemically.
This is exactly the situation with buffers. Although ionic equilibria are set up, we can
treat each ionising solute as if it were an independent component. To be more specific,
‘consider the case of sodium acetate and acetic acid. Suppose that each vessel had a
certain molarity, Cs of sodium acetate and another molarity, C}, of acetic acid, then
we could calculate tne pH in vessel 7 usmg the well—known approximation

I*‘iﬁ‘l} = ?Kr iﬁgw'fﬂ?f?i

to give the pH in the ith vessel as a function of the volume delivered. This follows
smce, 'dthough the salt and acid tonise, conservation of mass and electrical neutrality
mean that we can always use Cs(v) and C‘*(v) to calculate the sodium acetate and
acetic acid concentrations and hence the pH in the ith vessel as v varies. There is no
gblect: on in principle to using the more exact equations for pH or calcufating the pH
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by this method for a mixture of buffer salts. The only question is whether the extra
Iabour is justified, for instance if 2 pH range of more than two units, one éither side of
-the pK,, is required. When this approach is used to calculate pH(v) we can not only
- predict the gradient but, by analysis of dpH/dv and d?pH/dv? we can classify the
graphs of pH(v) that are possible for any given arrangement. We now do this for a
polynomial and exponential solute gradient.

THE SPECIAL CASE OF pH GRADIENTS GENERATED BY>TWO OPEN VESSELS OF IDENTI-
CAL CROSS-SECTIONAL AREA

Suppose that there are two vessels in all as in Fig. 1a with i = 1. If we adopt the
convention that tiie concentrations of salt at v = 0 are given by

C%o =S
Cslo =5
wile those of acid at v = 0 are defined to be
C&‘o = Ao
C® =4,

then the expression for the pH gradient emerging from vessel number one as a func-
tion of the volume, v, delivered to the column is

25,V + (So — Sl)"}(

H(v) = 1
pH(v) = pK, + log,o {2A1Vm F (g = A,)v

<

In order to analyse the pH(v) profiles we need the expressions for the derivatives
which are

dpH _ 2Vi0 (418 — A,S,)

d’pH _ —4V,4(4,S, — 405)) [V10(4eS: + A4S, — 24,S)) + (A — A,) (So — Spv]

dv? T 2-303(24,Vi0 + (4o — AV 28, Vie + (So — Spv)?

Note that there can be no turning points but
A;8y — AgS; > 0« dpH/dv > 0
A1S0 - Aosl = 0 deH/dv = 0

AISO - AOSI < 0 deH/dv < 0
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Just one-infiexion is possible when . T - PSR
(40S; + 4,55 — 24,5,) (4 — A1) (Sp —'51) < ©

but’ this can enly be realised at v = v, if ]

v, = VIO (2A1$1 - A].SO - AOSI);
T (e — A4S - SY)

where min (Vy,. V,o) is the smallest starting volume of ¥, and ¥,,. Hence, not
counting the trivial case 4,5, — A,S; = 0, there are just eight gradients possible.
These are shown in Fig. 2, and the signs of the expressions required to classify these
pH profiles are summarised in the legend.

<.Zmin (Vyg, Vo)

THE SPECIAL CASE OF pH GRADIENTS GENERATED BY TWO VESSELS, ONE BEING
CLOSED TO THE ATMOSPHERE

Using the arrangement of Fig. 1(b) with two vessels in all, the pH profile is
givea by

Sg + (S — So)e-"'vm}

pH() = pk, + log,, {Ao (A, + dge e

e
ot (ii)

(iit)
— (iv)

\

(v}
{d) .

(vii)

{viii)

Fig 2.
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" ._Fig. 2. pH gradicats possible with just two vessels. Concentrations of salt and acid in the two vessalsat v =
0 are Sy, S, 4£i, Aq; the starting volemes are Vo and ¥,. The eight pH(v} profiles labelled (@)—(viii) are
possible with both vessels open or one open and one closed. (2) Inequalities involved with both vessels
open. Classification of the gadmrs according to the arrangement of Fig 1(a) requires the sign of the
folhwmgfcmﬁmctmns -

= 4,5y — Aosx
5:'. = 4,8, + 4,5, — 2&,51
&3 = (4o — 4} (Sa — Sy}
€. = 2min (Fog, Vio) — V3o 24,5, — 43S, — ASe)(As — 4,)(So — Sy)
pH(G) =pK, + log, (35, V. + (So — INQRA Vo + (dy — AW]
and the appropriate signes are now listed: -

Skape
8}

@)
(i)

@v)
)
(Vi)

(viD)
(viii)

]
A
|

P | |
8
i

R
=]
~

|

T I T N A
]
|

C I T I R B
Pk bk L) @

The end of the gradient occurs at vy = 2 min (Vq, V) 2and ihe inflexion point, where present, occurs at
¥ = Vo248 — 4,8, — 4S04y — 4,) (So — Sy). (b) Inequalities involved with one vessel closed.
Classification of the gradient according to the arrangement of Fig. 1b requires the sign of the following
four functions:

8y = 4,55 — A4S,
= AgSp — (4o — A4} (So — S
8y = (4 — 4,)(So — Sy)
8, = 2Vgo/Vio — In[(4g — A4,) (Sp — S;)/Aosa]

The equanon of the gradient is
PHG) = pK, + 1080 [(So + (51 — Sole ") (4g + (A; — Agle™ V1)

and the appropriate signs are now listed:

Shape 0, é, 6 :

@) + - + -

(i) + + + +

(i) + + + -
+ -+ - not defined

Gv) + - + +

) - - + +

(Vi) - + + -
- + - not defined

(i) - + + +

— + -

(viii) -

“The end-point of the gradient occlirs at v = ¥, and the inflexion point, where preseat, occurs at vy —
(Vie/2) In {(4o — A4,} (So ~ S1){ASe]
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and the first and second derivatives are

ééﬁi - — fégSg - AQS }e—v"’m

dv 2 303 Vio (4o + (Ai — dg)e ") (S + (S; — So)e—vlvm)

d’pH _ —(4:So — AgS)e "V [4,S, — (dg — A)) (S; — Sy)e™ V1]
de 2'303%0 (Ao + (Al -_— Ao)e —vIVm)Z (SO + (Sl —_ So)e—v[V1°)2

As with the open vessels there are no turniag points and the sign of the first derivative
depends only on the sign of AIS0 — A,S,. An inflexion can gccur at a positive zero, v
= v, of

AgSo — (dg — A4)) (Sp ~ Sp)e™>Wee =0
providing this can be realised experimentally, ie.
vp = (Vyo/2) In {(4o — A,) (So — S1)/4eSel < Voo

The eight possible shapes for pH(v) are shown in Fig. 2. They are the same shapes as
those possible for open compartments except that different inequalities are involved,
as shown in the legend to Fig. 2.

THE EXPERIMENTAL TESTING OF PREDICTED GRADIENTS

Any theoretical studies of the type presented in this paper should be tested to
determine the validity of the equations given. Since a large number of pH profiles are
possible even with only a few compartments, it was not thought profitable to generate
gradients of all possible types. Instead, we decided to generate typical gradients using
two, three and four vessels, i.e. n = 1, 2 and 3, for the situations where either all of the
vessels were open to the atmosphere or n were closed. We generated gradients using
sodium acetate and acetic acid and the results are to be seen in Fig. 3. Details of the
solutions and apparatus used are to be found in the legend to the figure and the
equations used are to be found in the Appendix.

In Fig. 3a are the results for (i) n = 1, (ii) n = 2 and (iii) n = 3, all vessels being
open to the atmosphere and giving a descending pH gradient covering the range of
one pH unit each side of the pK], value. Similarly, Fig. 3(b) shows theresulisfor (i) n =
1, (i}) n = 2 and (iii) n = 3, with n vessels closed, the concentrations being arranged so
that the gradient increases. The agreement between the calculated pH(v) points (solid
line) and experimental points (Q) is excellent in all cases.

CONCLUSIONS

It is valuable to know what solute and pH gradients are possible using only
containers, connecting tubes and magnetic stirrers. In this paper and the previous
one' we have calculated the equations necessary to predict such gradients under the
assumption that mixing is instantancous in each vessel and neglecting gravitational
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effects. The experimental findings are that, under the sort of flow-rates required for

- jon-exchange chromatography, these equations are exiremely accurate. It is reason-
able to end by giving some guide ‘as to the procedure to be adopted by an ex-
perimentalist who wished to generate a particular pH gradient. =

Analysis of the equations for predicting pH (v) gradients when n > 1 show that

there is a very large number of possible pH(v) shapes including profiles with several
- turning points and inflexions. It is likely that n = 2 or 3 and open containers would be
sufficient for most requirements, a typical gradient being that of Fig. 3a (iii). The
experirnentalist wishing to generate such a gradient would have to draw a sketch of
the required gradient spanning a range of up to one pH unit either side of the pX,
value of the selected buffer. A number of such idealised pairs of coordinates would
then be chosen sufficient to obtain enough numerical sets of pi and v values to solve
for the coefficients of the pH(¥) equations appropriate for the system selected. The
equations necessary for this purpose are collected together in the Appendix.

APPENDIX: EQUATIONS USED FOR PREDICTING SOLUTE AND pH GRADIENTS

Symbols: v = volume delivered to the column from vessel number n. C;(v) = concen-
tration of solute in the ith vessel. C;, = C{(0), ie. the concentration in the ith vessel
when v = (. V(v) = volume of solution in the ith v&ssel Ve = VA0), ie. the volume
in the /th vessel when v = 0.

Assembly as in Fig. 1a, n + 1 open compartments
- Valid for 0 < v < (n + 1) smallest ¥,

WVessel 0, Co(v) = Gy, a constant

Vessel 1, C,(v) = Cyo + (Coo — Cyo) (W/(n + 1) ¥30)

Vessel 2, C3(v) = Cyg + 2(Cio — Czo) (/@ + 1) Vo) + (Cyo — Cio + (Coo
— C1o) V20! Vi0) (Wi(n + DV5)°
Vessel 3, C3(v) = Cao + 3HCo — Cio) (vi(n + 1)V3,,) + 3(Cso — Czo + (Cro —
+Czo) Vol Vao) (v/(n + DV30)? + (@2 — C30 — (Cro — C20)V30/ V2o + (C20 — Cio +
(Coo — C10WV20!¥10) (V30lV10)] (vf(n + DV30)° .

The special casewhen,Vw =V,i=12,..,n
Cn("’)_= C,._:o - (:) (Cu,q - s—l o) (W/(n + DY) + (:) (Coo — 2Cu—1 o + C -2.0)

Ol + DV = G) (Cup = 3Cumso + 3Cumzo = Cumao) G0 + DV +
= B OGO+ DV i+ DY

Assembly as in Frg. 1b,. open and n czosed vessels
- Valid for 0 < v < Voo, Vio #- Ve - . -

Definitions: A = C;q — Cgg; B = Cy0 + (Coo Vg — C,o Vo) (Vie — Vao); C
= G35 + CooV30/(V2o — Vso) + (CyoVie — CooViao)Vio/(Vie — Vie) (V2o — Vzo)

Vessel 0, C (v). = Cyg, 2 constant

Vessel 1, Cy(v) = Cgo + A~V

*Vessel 2, Gy = Coo + [A Viof(Vio — Vzo)le—'”“ +Be-'fv2°

Vessel 3, Gi(v) = Cﬁo +. [4Vie/(Vie — Vzo) ( Vm o Vso)le—f"’” +
{BVzof(Vm - Vso)}e""’-° + Ce"""”(:?: e R o
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) - ’Ihespecié.lcaseWhen Vie=V,i= 1,2,..-.,12 )

TGV = Coo + {(Cap — Coo) + (Caio — Coad (WIV) + ((Co—30 — Cn:gol)/zl Wy +
oo F [Cro — Coodln — DY (/¥y} = Coo + e '2;’ (Ca-io —
Co0)/ Y (v PY
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