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SUMMARY 

An improved theory is presented for predicting the solute gradients that can be 
generated with vessels of variable or constant cross-sectional area together with flex- 
ible connecting tubing. Formulae are given for two possible arrangements using four 
such vessels and, where there is the restriction of identical starting volumes, equations 
are given for n compartments. The general principles behind the use of these equ- 
ations for predicting ptf gradients are considered, and the special case of two vessels 
is shown to be capable of generating eight different pH pro&s as a function of 
volume delivered. Experiments are reported which support the usefulness of the 
theoretical treatment. 

INTRODL!CTION 

In a previous paper1 we discussed the general principles underlying the gener- 
ation of solute gradients using only a series of vessels and a peristaltic pump. We 
mentioned that the concentration versus time profile could be calculated assuming 
that the pump delivered at a constant rate, and that this could then be expressed as a 
function of volume delivered. The present study arose out of the need to use a pump 
of variable flow-rate or even to dispense with a pump altogether and also from the 
requirement to calculate pH gradients for use in ion-exchange chromatography_ In 
this paper we present a simpler theory of solute gradients which only considers the 
concentration profile as a function of volume delivered. Then we extend the theory to 
the prediction of pH gradients_ 

THE GENERAL THEORY OF GRADIENTS POSSIBLE WITH ALL VESSELS OPEN TO THE 

ATMOSPHERE AND OF CONSTANT CROSS-SECTIONAL AREA 

Consider a series of open vessels connected as in Fig. la. There is a starting 
vessel, 0, followed by n further vessels, all well-stirred so that mixing is instan- 
taneous. Hence as long as the flow-rate is sufkiently smaii we have no need to 
consider time as an independent variab!e, and the vessels may be drained by gravi- 
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(b) 
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Fig. 1. The assemblies of vessels used to generate solute and pH gradients Vessel number 0 is always open 
to the atmosphere and is not stirred_ Vessels number 1.2, _ _-; n are well stirred by magnetic followcrs The 
fluid constituting the grzdiuzt may Bow from vessel n tmdcr gravity or may bc controffed by a pump. The 
flow-rate is irrelevant within reason, ie_, providing that mixi5g is instantan~us in all vessels. The gradient 
mzy be stopped at any point an& reSzrt& or the Bow-rate may be altered as required since the equations 
@-en on& consider the volume delivered from vessel mm&r n. (a) All bpca vescls. In this arrangement, 
all of the */essels have the same cross-sectional area and are at constant hydrostatic pressure- clips pre- 
venting flow bctweeri vessels arc removed at the commescmcnt of the experiment. As a volume ekmcat 
da-floss out ofvessel n, a volume dauent WV/(= + I) ffoas into %‘csstl id an element (i f 1) dv/(n + i) 

fhvsoutTlznetf!owisthus -dv/(n f I) for each vcsscl. The gradient will continue until that vcssci 
containing the 1ca.G starting volume is exhausted, i.e. the v&d expzrim~tal range is 0 c v G (n + I) min 
(P&, VP). (b) Closed vessels. In this anangenent, the vessels i = 1,2, .._, n are closed and so K<v) = 
F&i== IJ,.., n. Bemuse of t&s, the shape of vesels i = 1,2, ___. n and the volumes contained arc 
irrelevant. As a volume element dv is removed from vessel number n, a volume element dv transferred 
from number 0 into cumber I. Each vessel gains dv and loses dv and the gradient is real&d until vesel 
nIlmberOemptks,is.O~v~Y,. The calcuktion can t&n be continued using CL (v = -VW) as the 
concentration in a new starting vesd and using the appropriate set of equations for oaSfewer cornpart- 
mcnt In this zn&&od of -crating gndients it is advisabk to reduce the dead volume of air as much as 
possibleb,vbavklgve%ls1,2.__.,nGIkd 

tatio& flow or by an internzitit or var% 2!k-s@ pump. Let the mass of solute in 
the ith compartment be Mi and the vohmx be Vi and consider the element of mass 
dMi added to the compartment when an ekment of volume dv flows out of vessel n. 
Thisis 

d_Mi -= 
jMi-1 

(n + 
dr__ ti + l) lwi dv 

1) vi_1 (I2 -F 1) Vi 

SE 
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dV, 
dv= -I/@ f 1) 

where V, is the volume in vessel i at v = 0, i.e. the start of the gradient. The problem 
is now to derive a general formula for C,(v), the concentration of solute in the ith 
compartment, as a function of volume delivered, v. To do this we note that 

dCc dlM, v_ 

i- dv - dv ’ 

using the previous expressions for Ci, Vi, dMJdv and d Vi/dV. 
It is now clear that to obtain the required expression for Ci (v) we have to solve 

the first-order difEerential equation 

dCi 
x + iC,l[(II + 1) Vi* - V] = iCi_J[(tZ t 1) Vi0 - V] 

with integrating factor [(n f 1) V, - vImi_ fn order to integrate the equation to obtain 
C,(v), the gradient applied to the column, we need the expression for C,_ 1(v) and so 
we simply have to integrate systematically the expressions for C,(v), i = 1, 2, . . ., n. 

THE SPECIAL CASE OF FOUR OPEN VESSELS 

C,(v), i = I,- 2, 3. & will illustrate-the general procedure to be 
compartments are necessary and will lead to formulae that should 
required in practice. 

For i = 1 we have 

To explain the general technique we systematically solve the equations for 
followed if more 
cover most cases 

leading to 

C,(v) = cm f (Gel - Cl,) v/M f uv,, 



where Cm is the concentration of sohte in the i&t compzr@fent- wheg Y = 4%. Le. 

c, = C#) and of course C,(v) is constant at C, = C&v) for the duration of the 
expkment, __ 

For i = 2 we have 

% i 2C&z i f)V, - vj = 

2 Go -i- Woo - C,o)vl(n f Wf& + W20 - VI 

kadillg to 

and giving the 6nal expression 

Cl,(v) = c,, c 2(C,, - C,,) Vl(n + i)Vz* t 

tc20 - Go + woo Y Go) v,dv,ol @l(n + w20~2. 

For i = 3 we have, after some algebra, 

where - 

After using theintegrating factor we find _ 



and the integrationconstant, S, can be calculated from 

c30 = a i- 3(zz f 1)5/,&/Z f T(fl f I)2V$& f 

to be given by the expression 

6 = IC3, - c2, f Go - Gol V3dV20 + 

CGI - c20 + (Cl, - GCJ v20/ VIO) ( V3,l v2d21/~~ + II3 v:,. 

So the final equation for C,(v) is. 

C,(v) = C38 f 3fGY - C30) @/h f 0~3,) 

f 3tc3, - c2, -i- (Go - C2,)V,/v,,) W(n f 1) v3,,2 

f CGO - c3, - Gri - C2d V30/~20 

+ (C2, - cm f (Go - Go) V2,/Vl,) W30/V20)2l (v/h f 1) V3d3 

Note that these equations for CI (v) and- C2 (v) differ from those given previously’ 
since, in the former paper, the symbol q was mistakenly used in some places to 
represent the #low out of compartment numher zero, i.e. q/(n f I), rather than the 
rate of delivery of the pump. The equations become consistenton replacing q by q/(n 
f 1) in ffie previous paper in the equations for C, (t), C,(t) and t on page 992 and that 
for v by vl(n f 1) in the legend to Figure 3 011 page 995. 

Finally we emphasise that tbis theory is only valid for vessels of constant iden- 
tical cross-sectional area with all compartments at the same hydrostatic pressure_ The 
equations are coLlected together in the Appendix for convenience; there are no special 
problems when Via = Vjo for any i f j. The integraEed solutions are valid in the 
intervaI 

THE SPECIAL CASE WHEN ALL n OPEN VESSELS NAVE THE SAME VOLUME 

Ft is evident from the symmetry involved in these cakulations that a generat 
formula can be given for C,(v) in- terms of the C, and Vi,-,. However, this formula 
takes a very simple form when ah the starting volumes are identical_ say V, = V, Z = 
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1, 5 -c-, II. This is a situation of considerable expeknental value and-the general 
formula is 

C&) = Go - (3 (G.0 - Gl*O) fvl(n -f- 1) v) 
+ ca (C”.O 7. xv-,., + c,-,.*I (v!(n f 1) w 
- @(C&O - 3c,_,,, + 3c,_,,, - cR_3,0) (vl(n 4- 1) v)’ t --- 

Using the substitution vl(n + 1)V = w the formula inay also be written as 

c&v; = C,.,(l - WY + (3 c,_l,o w(l - w)” - l 
f (g cm_,, Lvz(1 - I%*)=-* + (;) c,_,,o rv3(1 - w)“_” i- . . . + c,, HP 

To prove this we observe that the general differential equation relating dCJdv, C, and 
Ck_l. k = 2, 3, . . . . n, is 

s - w) dC, 

k 
- f c, = c,_, 
dw 

NOW for C,(w) defkd by 

C,(w) = 5 (3 ck_i,0 lvql - WY--i 
i=O 

it follows that 

(1 - w) dC, 

k 
&-fC,= 

TX-E5 GENERAL THEORY OF GRADI!SJTS POSSIBLE VATIS ONE OPEN VESSEL &ND ALL 

OlYHEX COMPARThiEBii CL&D i0 -I-HE ATMOSPHERE 

Consid_&the arrangement depicted in Fi g:-I(b), whekvessel number zero is 
o&n and vessels i G 1 Y 2, . _ _, n are closed. For i + 0 the element of mass dMi added to 
-the ith conphtment‘ during the transfer of an element of vol-zme dv isgiven by _- 

. . : - 
+&=:~-‘f~,:I ._~_Q& =. ~1 .- -- -1. -_ 

_- 
:- .._ . -_ ~_ i 
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dC- 
2 = (q-1 - CJ/Vi 
dv 

and it follows that the general di%erential equation to be solved is 

dCi 

This time, since the volumes Vi are constant for i # 0, we have a linear system of 
simultaneous differential equations to solve, nameiy 

dC, 
dv 

dG 
dv 

dC, 
dv 

dC, 
dv 

_= 

- Wl, 0 0 . . . 

wzcl -l/V,, 0 . . . 

0 l/v30 -l/V,, --- 

..- 

0 0 0 ___ - 

with characteristic equation: 

IA- i Zl = (- 1)” fi (I/Vi, t ;I) 
i=l 

THE SPECIAL CASE OF FOUR COMPARTMENTS. THREE BEING CLOSED 

We pressume first that none of the three closed vessels contain equal volumes 
Le. Vi0 # V,, i + j and note that this leads to three distinct eigenvalues. Cd- 
culating the eig_nvectors corresponding to these eigenvahxes and adding a particular 
integral to the complementary function, we obtain the general sqluticn 
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,& f g)evv’Ko+ 

where A, B and C ase arbitrary constants andf, g and h are functions of v_ Now we 
be the variation of parameters technique to evahate~ g and h which must satisfy the 

system 

1 

V2 

VlO - v2ciGk - v,d 

0 

1 

v,o. 
v- - v,, LO 

_I 

f e-v!v10 f ge-WlO + 



C-E 

We find the expressions for A, B and C to be 

A = Cl0 - Coo 

B = c,, t 

c = c,, - 

(Go vzo - clo~loM~lo - V*o) 

Go v,ctA v,o - V30) + (GOVXO - Gl0~30)~30/(v1, - V3,) w,, - -V30) 

and this completes the integration for C&v) using up to four compartments. The 
general solution for n compartments can be obtained by symmetry from the equa- 
tions just given for four compartments. However, a complication arises when any of 
the starting voiumes are equal since this leads to repeated eigcnvakes. As #&is corn- 
plication would often occur in the laboratory, we now deal with tbe case Vi0 = 
VP for all i,J 

THE SPECIAL CASE WHEN THE n CLOSED VESSELS HAVE THE SkiME VOLUME 

It would ofterr be convenient to the experimentalist to have a series of closed 
vessels of t_he same volume, V, and, in this situation, the general formula for C,(v) is 
quite simple. In fact 
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anduseO!=2!=1. 
Now for k = 3;3, . . _, n the &nerd formula 

C,~Y) = Coo -+ e-r*v i =C, [(Ck - LO - coo)~!lw y)’ 

kais to 

k-l 

- coomwv)’ - jFo KG-i.0 - Go)/wwYI 

and so 

#C, 
x -i- C, = C, f eevJv 

as required. 

THE GEVER4L PRiNCiPLES UNDERLYING THE CAiCULATION OF pH GRADIENTS 

Tk equzitions given previously all refer to the ixmcentration of solute emerging 

from the nth vessel, i.e., C, as a function of the volume delivered to the column_ We 
showed earlier (Solano-Muiioz and Bardsley, 1981) that the gradients real&d experi- 
mentahy are insensitive to specific-gravity effects even up to molarities of around 
unity. Therefore, if the starting ves&s contain several different, non-interacting so- 
lutes, it is pussWe to cakulate the profiles for individual components. Suppose, for 
instance, that the vessels containedsolutes S,, $, _ _. , Sj and there were n vessels plus 
a starting vesse& then -the equations describing the concentration of Sr, S,, . - ., Sj 
would be C”,I(V), c”,+),,- __., tIY!(v) as long as S,, S,, ._., Sj did not react chemical&. 
Thkis exactly the situation with buffers- Although ionic equilibria are set up, we can 
treat each ionising solute as if it were an independent component_ To ‘be more specific, 
-consider the case of sodium acetate and acetic acid. Suppose that each vessel had a 
certain molarity; c”; of sodium acetate and another molarity, C:, of acetic acid, then 
we could cakulate’the pH in vessel i using the well-known approximation 

:_ 
-g&a*)_=_& ; &&&cg! _- : I 1 .~. .~ 

- 

to give the pH in the ith vessel as a fun&on of the volume delivered. This follows 
since, although the salt Hnd acid ion&, consemation of mass and electrical neutrality 
&an that wecan a&Gays use c’,(v) and _C$(v) to c&@a_tethe.sodium acetate and 
%&ic acid concentrations and hence the pH ip the-_&h vessel as Y varies. There is no 
o.b$ction &I priitc@fe_to u&ig the more exact ~yations fat pHor caGcuf..tig the pH 

_- : 
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by this &tbod for a miktuk of b&es salts. qti only question is whether the extra 
- kbow f.Sjb.diCd; for tinstance 2F.z pKr&nge ofmore than twti tits, one Gther &de of 

I the PI& is required_ When this’ apprOa& is t&d to CaIcul&e pE( v) we can not only 
predict the gradient but, by +ysis of dpH/dv and d2pH/dti we can classify the 
grap& ofpFX(v) that are possx%fe for 6ny given arrangement. We now do this for a 
polyno~ql and exponential solute gradient. 

TEiE SPECIAL CASE OF &I GRADIENTS GENERATED BY TWO OPEN VESSELS OF IDENTI- 

C& CROSS-SECTIONAL AREA 

Suppose that there are two vessel in alI as in Fig. la with i = 1. If we adopt the 
convention that the concentrations of salt at v = 0 are given by 

Go = so 

wile those of acid at v = 0 are defined to be 

Cto = A 0 

Cm = A I 1 

then the expression for the pH gradient emerging from vessel number one as a func- 
tion of the volume, v, delivered to the column is 

PHW = P< f log,, 
2s, VI0 f (S, - S,)v 
M 

1 
V 

10 f (A, - A,)v J 

In order to analyse the pH(v) proofiles we need the expressions for the derivatives 
which are 

dpH 2v10 CWo - A,&) -= 
dv 2-303(2x-f, VI0 + (A0 - A&) (2S, VI0 f (S, - S,)v) 

d2pH --4V,,(A,&, - A&) IJ’,,&& f A,&, - 2A,S,) f (A, - A,) 6% - S,)vl -- 
dv2 2-303(2A,V,, + (A, - Al)v)’ (2S, VI, i (S, - S,)V)~ 

Note that there can be no turning points but 

A& - A& > 0 e dpH/dv > 0 

AJo - A,& = 0 o dpH/dv = 0 

A,& - A,& < 0 o dpH/dv c 0 



tihere min (V,,, V,,) is tie smallest starting volume of V, and V,,. Hence, not 
cocnting the trivial case A,S, - A,& = 0, there are just eight gradients possible. 
These are shown in Fig. 2, and the signs of the expressions required to classify these 
pH pro5ks are summtised iii the lesnd. 

-i-HE Si=ECIAL CASE OF pH GRADIEhi GENEiMTED BY TWO VESSELS, ONE BEING 
CLOSED TO THE ATMOSPHERE 

Using the arrangement of Fi,. * l(b) with two vessels in all, the pH profile is 
give3 by 

PHW = PK f hiso 
So + (S, - So)e-viv~~ 

A0 i- ‘(A, -+ 3 Ao)e-"v'" 
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Ti.teeadoft6egmdiest occursat VF = 2alin(v.., V,,)andtheinfkxi0npoint,where presen~accurs 2t 
ri = V&&S, - A& - A;S&(A, - A,) (S,, - S,). (b) Inequalities involved with one vessel closed. 
Qdsificaton of the gradient according to the arrangement of Fig. lb requires the sign of the following 
four filnctians: 

4 = ASO - ibs, 
e, = ADS, - (A0 - 4) (So - S,) 
0, = (4 - 4) (so - s,) 
8, = 2vOo/ VlO - la IWO - 4) (S, - S,)/A&l 

TlIeeqmtionofthegIadientis 

pHtv) = pK, + log,, [(So + (S, - So)e-‘“‘o)/(~o t (A, - ~~)e-‘“q 

sadthe appropriate signs are now listed: 
S-e 6 % 63 

(9 f f 

69 i t i- 

(iii) f f f 

f .-f- 
- 

0 + - f 

w t 

(vi) - -6 i 

- i- - 
+=I - f + 
f&i) - f 

e4 

f 
- 
not defhled 
+ 
+ 

aot defined 
f 
- 

.The &d-point of&e glzdi&t_occuts at P, = V, and the infkxion point, where present, occuss at VI = 
W*oi2) bl [(A, - 4 (So - w/4sJ 
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and the Grst and sec&d derivatives are 

dpH_: - (A& - A&)e-v~v= 
dv 2 - 303 v,, (A, f (Ap - Ao)e-“fvxo) (So f (S, - So)e-91v10) 

d*pH - (A,&, - AOSI)e-V~~O [A,& - (A,, - A,) (So - S,)e-zv’vlo] 

-s-= 2- 303r<o (A, i- (A, - A,)e -v’v~~)2 (So + (S, - &,)e-“~v~~)2 

As with the open vessels there are no turning points and the sign of the fkt derivative 
depends only on the sign of A,& - A,&. Au iuflexion can occur at a positive zero, v 
= v,, of 

A&& - (A, - A,) (So - Sl)e-2v'v~o = 0 

providing this can be real&d experimentally, Le. 

VI = W10/2) h [(A, - A,) 6, - S,)M,S,] -= V,, 

The eight possible shapes for pH(v) are shown in Fig. 2. They are the same shapes as 
those possible for open compartments except that different inequalities are involved, 
as shown in the legend to Fig. 2. 

THE EXPERIMENTAL TESTING OF PREDICTED GRADIENTS 

Any theoretical studies of the type presented in this paper should be tested to 
determine the validity of the equations given. Site a large number of pH profiles are 
possible even with only a few compartments, it was not thought profitable to generate 
gradients of all possible types. Instead, we decided to generate typical gradients using 
two, three and four vessels, ie. n = 1,2 and 3, for the situations where either all of the 
vessels were open to the atmosphere or n were closed. We generated gradients using 
sodium acetate and acetic acid and the results are to be seen in Fig. 3. Details of the 
solutions and apparatus used are to be found in the legend to the figure and the 
equations used are to be found in the ~-Ippendix. 

In Fig_ 3a are the results for (i) n = 1, (ii) n = 2 and (iii) n = 3, all vessels being 
open to the atmosphere and giving a descending pH gradient covering the range of 
one pH utit each side of the pG value. Similarly, Fig. 3(b) shows the resnlts for (i) n = 
1) (ii) n = 2 and (iii) n = 3, with n vessels closed, the concentrations being arranged so 
that the gradient increases. The agreement between the calculated pH(v) points (solid 
line) and experimental points (0) is excellent in all czses. 

CONCLUSEONS 

Lt is valuable to know what solute and pH gradients are possible using only 
containers, connecting tubes and magnetic stirrers. In this paper and the previous 
one’ we have calculated the equations necessary to predict such gradients under the 
assumption that mixing is instantaneous in each vessel and neglecting gravitational 



~effixts_~The experimental hiings are that, under the-sort of now-rates required for 
ion-exchange chromatogmphy, these equations are extremely aaxraie. It is reason- 
able to end by giving some guide as to the procedure to be adopted by- an ex- 
perimental&t who wished to getiertite a partic& pH gradient. - -- __ -_ 

&&ysis of the equations for predicting pH(v) gradients when n > 1 show that 
there is a very large number of possible pH(v) shapes itXluding_proG.l~ w$h several 

turning points and Mexions. It is likely that n F 2 o_r 3 and open containers would be 
sti&ent for most requirements, a typical gradient being that of Fig. 3a (iii). The 
experimentahst wishing to generate such a gradient would have to draw a sketch of 
the required gradient spanning a range of up to one pH_un.it either side of the p& 
value of the selected buffer_ A number of such ideal&d -pairs of coordinates would 
then be chosen suf&ient to obtain enough numerical sets of pX and Y values to solve 
for the coef&ients of the pH(v) equations appropriate for the system selected. The 
equations necessary for this purpose are collected together in theAppendix. 

APPENDIX: EQUATIONS USED FOR PRJZDICllNG SOLIJE AND pR GRADIENTS 
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